The difference between the compound interest compounded annually and simple interest for 2 years at 20% per annum is Rs.144. Find the principal?
		A. Rs.3000
B. Rs.3300
C. Rs.3600
D. Rs.3900
		A. Rs.3000
B. Rs.3300
C. Rs.3600
D. Rs.3900
		A. 2.3 m
B. 4.6 m
C. 7.8 m
D. 9.2 m
Let AB be the wall and BC be the ladder. Then, ∠ACB = 60° and AC = 4.6 m. AC/BC = Cos 60° = 1/2 BC = 2 X AC = (2 X 4.6) m = 9.2 m.
		A. Rs.500
B. Rs.250
C. Rs.5012.50
D. Rs.5062.50
E. None of these.
Explanation:
Let the principal be Rs.P
S.I at 5% p.a in 8 years on Rs.P = Rs.500
(P)(8)(5)/100 = 500
P = 1250
C.I on Rs.2P i.e., Rs.2500 at 5% p.a in two years
=2500{ [1 + 5/100]2 – 1} = 2500{ 212 – 202 /202}
= 2500/400(441 – 400)
= 25/4(41) = 1025/4 = Rs.256.25
[B].
[C].
[D].
Answer: Option B
Explanation:
Let the sum be Rs. P.
| Then, | P | 1 + | 10 | 2 | – P | = 525 | ||||
| 100 | 
| P | 11 | 2 | – 1 | = 525 | |||||
| 10 | 
| P = | 525 x 100 | = 2500. | ||
| 21 | 
Sum = Rs . 2500.
| So, S.I. = Rs. | 2500 x 5 x 4 | = Rs. 500 | ||
| 100 | 
		A. 20
B. 30
C. 40
D. None of these
		A. 5 days
B. 10 days
C. 15 days
D. 12 days
Work done by P in 1 day = 1/20
Work done by Q in 1 day = 1/12
Work done by P in 4 days = 4 × (1/20) = 1/5
Remaining work = 1 – 1/5 = 4/5
Work done by P and Q in 1 day = 1/20 + 1/12 = 8/60 = 2/15
Number of days P and Q take to complete the remaining work = (4/5) / (2/15) = 6
Total days = 4 + 6 = 10
		A. 40
B. 50
C. 30
D. 56