|

The area of the square formed on the diagonal of a rectangle as its side is 108 1/3 % more than the area of the rectangle. If the perimeter of the rectangle is 28 units, find the difference between the sides of the rectangle?

The area of the square formed on the diagonal of a rectangle as its side is 108 1/3 % more than the area of the rectangle. If the perimeter of the rectangle is 28 units, find the difference between the sides of the rectangle?

A. 8
B. 12
C. 6
D. 2
Let the sides of the rectangle be l and b respectively.
From the given data,
(√l2 + b2) = (1 + 108 1/3 %)lb
=> l2 + b2 = (1 + 325/3 * 1/100)lb
= (1 + 13/12)lb
= 25/12 lb
=> (l2 + b2)/lb = 25/12
12(l2 + b2) = 25lb
Adding 24lb on both sides
12l2 + 12b2 + 24lb = 49lb
12(l2 + b2 + 2lb) = 49lb
but 2(l + b) = 28 => l + b = 14
12(l + b)2 = 49lb
=> 12(14)2 = 49lb
=> lb = 48
Since l + b = 14, l = 8 and b = 6
l – b = 8 – 6 = 2m.

Similar Posts