A. (R/ΔH) (1/T1 – 1/T2)
B. (ΔH/R) (1/T1 – 1/T2)
C. (ΔH/R) (1/T2 – 1/T1)
D. (1/R) (1/T1 – 1/T2)
A. (R/ΔH) (1/T1 – 1/T2)
B. (ΔH/R) (1/T1 – 1/T2)
C. (ΔH/R) (1/T2 – 1/T1)
D. (1/R) (1/T1 – 1/T2)
A. CO2
B. H2
C. O2
D. N2
A. Use of only one graph for all gases
B. Covering of wide range
C. Easier plotting
D. More accurate plotting
A. μ° + RT ln f
B. μ°+ R ln f
C. μ° + T ln f
D. μ° + R/T ln f
A. V/T = Constant
B. V ∝ 1/T
C. V ∝ 1/P
D. PV/T = Constant
A. Lewis-Randall
B. Margules
C. Van Laar
D. Both B. & C.
A. -2 RT ln 0.5
B. -RT ln 0.5
C. 0.5 RT
D. 2 RT
A. 72
B. 92
C. 142
D. 192
A. Ice at the base contains impurities which lowers its melting point
B. Due to the high pressure at the base, its melting point reduces
C. The iceberg remains in a warmer condition at the base
D. All A, B. and C
A. Vapor pressure
B. Partial pressure
C. Chemical potential
D. None of these