A. Rs 2518
B. Rs 2520
C. Rs 2522
D. Rs 2524
Explanation:
P = Rs 16000, R = (10/2)%
per quarter, t = 3 quarters
C.I = Rs [16000 × (1+ 5/100)3-16000)
= Rs [16000 × 21/20 ×21/20× 21/20- 16000)
=Rs (18522-16000)=Rs 2522
A. Rs 2518
B. Rs 2520
C. Rs 2522
D. Rs 2524
Explanation:
P = Rs 16000, R = (10/2)%
per quarter, t = 3 quarters
C.I = Rs [16000 × (1+ 5/100)3-16000)
= Rs [16000 × 21/20 ×21/20× 21/20- 16000)
=Rs (18522-16000)=Rs 2522
A. Rs 17423
B. Rs 18973
C. Rs 19448
D. Rs 19880
Explanation:
P = Rs 16000, R = (10/2)%
Per half-year , t= 4 half-years
Therefore Amount = Rs [16000 × (1+5/100)4]
= Rs (16000 × 21/20 × 21/20 × 21/20 × 21/20)
= Rs 1448.10 ~ Rs 19448
A. Rs 9000.30
B. Rs 9720
C. Rs 10123.20
D. Rs 10483.20
E. None of these
Explanation:
C.I = [25000 × (1+12/100)3-25000]
= Rs [(25000 × 28/25 × 28/25 × 28/25)-25000]
=Rs(175616/5-25000) = Rs (35123.20 – 25000)
= Rs 10123.20
A. Rs 230
B. Rs 232
C. Rs 600
D. Rs 832
Explanation:
S.I = Rs (6000 × 5/100×2)=Rs 600
C.I = Rs [5000 × (1+8/100)2-5000]
= Rs [(5000 × 27/25 ×27/25)-5000]
=Rs (5832-5000)=Rs 832
(c.I) – (S.I) = Rs (832-600) = Rs 232
A. Rs 50
B. Rs 60
C. Rs 61
D. Rs 600
Explanation:
S.I = Rs(8000 × 5/100 ×3) = Rs 1200
C.I = Rs [8000 × (1+5/100)3– 8000
= Rs [(8000 × 21/20×21/20×21/20)-8000]
=Rs (9261-8000)=Rs 1261
(c.I)-(S.I) = Rs (1261 – 1200) = Rs61.
A. Rs 145
B. Rs 150
C. Rs 165
D. Rs 180
E. None of these
A. Rs.4400
B. Rs.4445
C. Rs.4460
D. Rs.4520
Explanation:
Sum be P
P(1 + R/100)3 = 6690 – (i)
P(1 + R/100)2 = 10, 035 – (ii)
By dividing (i) and (ii)
(1 + R/100)3 = 10035/6690 = 3/2
Therefore, P = (6690 x 2/3) = Rs. 4460
A. Rs.1500
B. Rs.2000
C. Rs.2500
D. Rs.3000
Explanation:
P be the principle and R % per annum be rate
P(1 + R/100)3 = 3149.28 – (i)
P(1 + R/100)2 = 2916 – (ii)
By dividing (i) and (ii)
(1 + R/100) = 3149.28/2916 R/100 = 233.28/2916
or R =233.28/2916 x 100 = 8 %
P(1 +8/100)2 = 2916 or
P × 27/25 × 27/25 = 2916
Or = 1822500/729= Rs.2500
A. 5 %
B. 10 %
C. 15 %
D. 20 %
Explanation:
P be the principle and R % Per annum be the rate.
P(1 + R/100) 3 = 10648 – (i)
P(1 + R/100) 2 = 9680 – (ii)
By dividing (i) and (ii)
(1 +R/100) = 10648/9680 Or
R/100 = 968/9680 = 1/10 or
R = 10 %
A. 10 %
B. 12 %
C. 6 %
D. 8 %
Explanation:
5000 × (1 +R/100) 2 – 5000 –(10000R/100)= 72
=> 5000 [(1 + R/100) 2 – 1 – R/50] = 72
=> 1 + R2/100 + 2R/100 – 1 – R/50 = 72/5000
=> R2 = (72/5000 × 10000) = 144 or R =12%