Condensing film co-efficient for steam on horizontal tubes ranges from 5000 to 15000 Kcal/hr.m2.°C. Condensation of vapor is carried out inside the tube in a shell and tube heat exchanger, when the_________________?

Condensing film co-efficient for steam on horizontal tubes ranges from 5000 to 15000 Kcal/hr.m2.°C. Condensation of vapor is carried out inside the tube in a shell and tube heat exchanger, when the_________________?

A. Higher condensing film co-efficient is desired
B. Condensate is corrosive in nature
C. Lower pressure drop through the exchanger is desired
D. Temperature of the incoming vapor is very high

A steel sphere of radius 0.1 m at 400°K is immersed in an oil at 300°K. If the centre of the sphere reaches 350°K in 20 minutes, how long will it take for a 0.05 m radius steel sphere to reach the same temperature (at the centre) under identical conditions? Assume that the conductive heat transfer co-efficient is infinitely large ?

A steel sphere of radius 0.1 m at 400°K is immersed in an oil at 300°K. If the centre of the sphere reaches 350°K in 20 minutes, how long will it take for a 0.05 m radius steel sphere to reach the same temperature (at the centre) under identical conditions? Assume that the conductive heat transfer co-efficient is infinitely large ?

A. 5 minutes
B. 10 minutes
C. 20 minutes
D. 40 minutes

A process stream of dilute aqueous solution flowing at the rate of10 Kg.s-1 is to be heated. Steam condensate at 95°C is available for heating purpose, also at a rate of 10 Kg.s-1. A 1 – 1 shell and tube heat exchanger is available. The best arrangement is_______________?

A process stream of dilute aqueous solution flowing at the rate of10 Kg.s-1 is to be heated. Steam condensate at 95°C is available for heating purpose, also at a rate of 10 Kg.s-1. A 1 – 1 shell and tube heat exchanger is available. The best arrangement is_______________?

A. Counter flow with process stream on shell side
B. Counter flow with process stream on tube side
C. Parallel flow with process stream on shell side
D. Parallel flow with process stream on tube side