[A].
[B].
[C].
[D].
Answer: Option C
Explanation:
9548 16862 = 8362 + x
+ 7314 x = 16862 – 8362
—– = 8500
16862
—–
[B].
[C].
[D].
Answer: Option C
Explanation:
9548 16862 = 8362 + x
+ 7314 x = 16862 – 8362
—– = 8500
16862
—–
[B].
[C].
[D].
Answer: Option D
Explanation:
35423 317 x 89 = 317 x (90 -1 )
+ 7164 = (317 x 90 – 317)
+ 41720 = (28530 – 317)
—– = 28213
84307
– 28213
—–
56094
—–
[B].
[C].
[D].
Answer: Option D
Explanation:
| Given Exp. | = -84 x (30 – 1) + 365 |
| = -(84 x 30) + 84 + 365 | |
| = -2520 + 449 | |
| = -2071 |
[B].
[C].
[D].
Answer: Option B
Explanation:
3
+ 33
+ 333
+ 3.33
——
372.33
——
[B].
[C].
[D].
Answer: Option B
Explanation:
(112 + 122 + 132 + … + 202) = (12 + 22 + 32 + … + 202) – (12 + 22 + 32 + … + 102)
| Ref: (12 + 22 + 32 + … + n2) = | 1 | n(n + 1)(2n + 1) | |||
| 6 |
| = | 20 x 21 x 41 | – | 10 x 11 x 21 | ||
| 6 | 6 |
= (2870 – 385)
= 2485.
[B].
[C].
[D].
Answer: Option A
Explanation:
19657 Let x – 53651 = 9999
33994 Then, x = 9999 + 53651 = 63650
—–
53651
—–
[B].
[C].
[D].
Answer: Option C
Explanation:
(22 + 42 + 62 + … + 202) = (1 x 2)2 + (2 x 2)2 + (2 x 3)2 + … + (2 x 10)2
= (22 x 12) + (22 x 22) + (22 x 32) + … + (22 x 102)
= 22 x [12 + 22 + 32 + … + 102]
| Ref: (12 + 22 + 32 + … + n2) = | 1 | n(n + 1)(2n + 1) | |||
| 6 |
| = | 4 x | 1 | x 10 x 11 x 21 | ||
| 6 |
= (4 x 5 x 77)
= 1540.
[B].
[C].
[D].
Answer: Option D
Explanation:
| We know that (12 + 22 + 32 + … + n2) = | 1 | n(n + 1)(2n + 1) |
| 6 |
| Putting n = 10, required sum = | 1 | x 10 x 11 x 21 | = 385 | ||
| 6 |
[B].
[C].
[D].
Answer: Option B
Explanation:
| This is a G.P. in which a = 2, r = | 22 | = 2 and n = 9. |
| 2 |
| Sn = | a(rn – 1) | = | 2 x (29 – 1) | = 2 x (512 – 1) = 2 x 511 = 1022. |
| (r – 1) | (2 – 1) |
[B].
[C].
[D].
Answer: Option A
Explanation:
| Here a = 3 and r = | 6 | = 2. Let the number of terms be n. |
| 3 |
Then, tn = 384 arn-1 = 384
3 x 2n – 1 = 384
2n-1 = 128 = 27
n – 1 = 7
n = 8
Number of terms = 8.