-84 x 29 + 365 = ?
-84 x 29 + 365 = ?
[A].
[B].
[C].
[D].
Answer: Option D
Explanation:
Given Exp. | = -84 x (30 – 1) + 365 |
= -(84 x 30) + 84 + 365 | |
= -2520 + 449 | |
= -2071 |
-84 x 29 + 365 = ? Read More »
Aptitude, Numbers[B].
[C].
[D].
Answer: Option D
Explanation:
Given Exp. | = -84 x (30 – 1) + 365 |
= -(84 x 30) + 84 + 365 | |
= -2520 + 449 | |
= -2071 |
-84 x 29 + 365 = ? Read More »
Aptitude, Numbers[B].
[C].
[D].
Answer: Option B
Explanation:
3
+ 33
+ 333
+ 3.33
——
372.33
——
3 + 33 + 333 + 3.33 = ? Read More »
Aptitude, Numbers[B].
[C].
[D].
Answer: Option B
Explanation:
(112 + 122 + 132 + … + 202) = (12 + 22 + 32 + … + 202) – (12 + 22 + 32 + … + 102)
Ref: (12 + 22 + 32 + … + n2) = | 1 | n(n + 1)(2n + 1) | |||
6 |
= | 20 x 21 x 41 | – | 10 x 11 x 21 | ||
6 | 6 |
= (2870 – 385)
= 2485.
(112 + 122 + 132 + … + 202) = ? Read More »
Aptitude, Numbers[B].
[C].
[D].
Answer: Option A
Explanation:
19657 Let x – 53651 = 9999
33994 Then, x = 9999 + 53651 = 63650
—–
53651
—–
(?) – 19657 – 33994 = 9999 Read More »
Aptitude, Numbers[B].
[C].
[D].
Answer: Option C
Explanation:
(22 + 42 + 62 + … + 202) = (1 x 2)2 + (2 x 2)2 + (2 x 3)2 + … + (2 x 10)2
= (22 x 12) + (22 x 22) + (22 x 32) + … + (22 x 102)
= 22 x [12 + 22 + 32 + … + 102]
Ref: (12 + 22 + 32 + … + n2) = | 1 | n(n + 1)(2n + 1) | |||
6 |
= | 4 x | 1 | x 10 x 11 x 21 | ||
6 |
= (4 x 5 x 77)
= 1540.
(22 + 42 + 62 + … + 202) = ? Read More »
Aptitude, Numbers[B].
[C].
[D].
Answer: Option D
Explanation:
We know that (12 + 22 + 32 + … + n2) = | 1 | n(n + 1)(2n + 1) |
6 |
Putting n = 10, required sum = | 1 | x 10 x 11 x 21 | = 385 | ||
6 |
(12 + 22 + 32 + … + 102) = ? Read More »
Aptitude, Numbers[B].
[C].
[D].
Answer: Option B
Explanation:
This is a G.P. in which a = 2, r = | 22 | = 2 and n = 9. |
2 |
Sn = | a(rn – 1) | = | 2 x (29 – 1) | = 2 x (512 – 1) = 2 x 511 = 1022. |
(r – 1) | (2 – 1) |
2 + 22 + 23 + … + 29 = ? Read More »
Aptitude, Numbers[B].
[C].
[D].
Answer: Option A
Explanation:
Here a = 3 and r = | 6 | = 2. Let the number of terms be n. |
3 |
Then, tn = 384 arn-1 = 384
3 x 2n – 1 = 384
2n-1 = 128 = 27
n – 1 = 7
n = 8
Number of terms = 8.
How many terms are there in the G.P. 3, 6, 12, 24, … , 384 ? Read More »
Aptitude, Numbers[B].
[C].
[D].
Answer: Option B
Explanation:
This is an A.P. in which a = 6, d = 6 and Sn = 1800
Then, | n | [2a + (n – 1)d] = 1800 |
2 |
n | [2 x 6 + (n – 1) x 6] = 1800 | |
2 |
3n (n + 1) = 1800
n(n + 1) = 600
n2 + n – 600 = 0
n2 + 25n – 24n – 600 = 0
n(n + 25) – 24(n + 25) = 0
(n + 25)(n – 24) = 0
n = 24
Number of terms = 24.
The sum of how many terms of the series 6 + 12 + 18 + 24 + … is 1800 ? Read More »
Aptitude, Numbers[B].
[C].
[D].
Answer: Option D
Explanation:
Required numbers are 10, 15, 20, 25, …, 95
This is an A.P. in which a = 10, d = 5 and l = 95.
tn = 95 a + (n – 1)d = 95
10 + (n – 1) x 5 = 95
(n – 1) x 5 = 85
(n – 1) = 17
n = 18
Requuired Sum = | n | (a + l) | = | 18 | x (10 + 95) = (9 x 105) = 945. |
2 | 2 |
The sum of all two digit numbers divisible by 5 is: Read More »
Aptitude, Numbers