Our website is made possible by displaying online advertisements to our visitors. Please consider supporting us by whitelisting our website.

A group of 10 representatives is to be selected out of 12 seniors and 10 juniors. In how many different ways can the group be selected, if it should have 5 seniors and 5 juniors?

A group of 10 representatives is to be selected out of 12 seniors and 10 juniors. In how many different ways can the group be selected, if it should have 5 seniors and 5 juniors?

A. ¹²C₅ * 10
B. ¹²C₇ * 10
C. ¹²C₇ * ¹⁰C₅
D. 12 * ¹⁰C₅
Here, five seniors out of 12 seniors can be selected in ¹²C₅ ways. Also, five juniors out of ten juniors can be selected ¹⁰C₅ ways. Hence the total number of different ways of selection = ¹²C₅ * ¹⁰C₅ = ¹²C₇ * ¹⁰C₅
= ¹²C₅ = ¹²C₇