A box contains 3 blue marbles, 4 red, 6 green marbles and 2 yellow marbles. If two marbles are picked at random, what is the probability that they are either blue or yellow?
A. 3/22
B. 4/21
C. 2/21
D. 1/14
Explanation:
Given that there are three blue marbles, four red marbles, six green marbles and two yellow marbles. Probability that both marbles are blue = ³C₂/¹⁵C₂ = (3 * 2)/(15 * 14) = 1/35
Probability that both are yellow = ²C₂/¹⁵C₂ = (2 * 1)/(15 * 14) = 1/105
Probability that one blue and other is yellow = (³C₁ * ²C₁)/¹⁵C₂ = (2 * 3 * 2)/(15 * 14) = 2/35
Required probability = 1/35 + 1/105 + 2/35
= 3/35 + 1/105 = 1/35(3 + 1/3)
= 10/(3 * 35) = 2/21