Find the least number which when divided by 6, 7, 8, 9 and 10 leaves 1, 2, 3, 4 and 5 as remainders respectively, but when divided by 19 leaves no remainder?
		A. 5073
B. 5016
C. 5054
D. 5035
		A. 5073
B. 5016
C. 5054
D. 5035
		A. 900
B. 950
C. 1000
D. 975
X * (110/100) * (95/100) = 1045
X * (11/10) * (1/100) = 11
X = 1000
		A. Rs. 81.60
B. Rs. 160
C. Rs. 1081.60
D. None of these
Explanation:
Principle = Rs.(8000/8) = Rs. 1000
Therefore, C. I = Rs. [{ 1000 × (1 +4/100)2 – 1000}]
= Rs. 81.60
		A. If x < y
B. If x > y
C. If x ≤ y
D. If x ≥ y
Explanation:
I. x2 + 6x + 5x + 30 = 0
=>(x + 6)(x + 5) = 0 => x = -6, -5
II. y2 + 8y + 7y + 56 = 0
=>(y + 8)(y + 7) = 0 => y = -8, -7
=> x > y
		A. 8
B. 12
C. 6
D. 2
Let the sides of the rectangle be l and b respectively.
From the given data,
(√l2 + b2) = (1 + 108 1/3 %)lb
=> l2 + b2 = (1 + 325/3 * 1/100)lb
= (1 + 13/12)lb
= 25/12 lb
=> (l2 + b2)/lb = 25/12
12(l2 + b2) = 25lb
Adding 24lb on both sides
12l2 + 12b2 + 24lb = 49lb
12(l2 + b2 + 2lb) = 49lb
but 2(l + b) = 28 => l + b = 14
12(l + b)2 = 49lb
=> 12(14)2 = 49lb
=> lb = 48
Since l + b = 14, l = 8 and b = 6
l – b = 8 – 6 = 2m.
		A. 4/3 cm
B. 3/4 cm
C. 3 cm
D. 4 cm
		A. 36cm
B. 38cm
C. 28cm
D. 18cm